Faculty Profile

Seyyed Keyhan Hosseini
Update: 2024-09-12

Seyyed Keyhan Hosseini

Faculty of Engineering / Department of Electrical, Electronic and Telecommu

Theses Faculty

M.Sc. Theses

  1. Design and modeling of semi-transparent perovskite solar cells
    2024
    The consumption of renewable energy is rapidly increasing. Additionally, limited non-renewable resources are available. Therefore, continuous research efforts are being made to generate energy from renewable sources such as solar, water, wind, etc. Photovoltaic cells, particularly perovskite solar cells, have gained popularity due to ease of fabrication, cost-effectiveness, high absorption coefficient, controllable energy gap, high charge carrier mobility, excellent power conversion efficiency (PCE), etc. The recent generation of perovskite solar cells are semi-transparent. In such solar cells, metallic back contacts are replaced by transparent contacts such as transparent conducting oxide (TCO) and thus they are able to absorb the solar light from both front and back contacts. In this regard, the incident light flux is enhanced which results in a higher absorption and PCE. In this research, optical and electrical modeling of a semi-transparent perovskite solar cell with a transparent back contact has been conducted using the COMSOL software. Finite Element Method (FEM) was employed to calculate absorption, reflection, light transmission, and the generation rate of electron-hole pairs. Electrical analysis was performed using the semiconductor module, obtaining characteristics such as the current-voltage (J-V) curve and photovoltaic parameters including short-circuit current, open-circuit voltage, filling factor, and PCE of the propose structure. Validating the simulation results, a semi-transparent solar cell with a MoOx/ITO back contact achieved a PCE of 13.87%. Removing the MoOx buffer layer increased PCE to 96.13%. Therefore, a buffer-less structure with high PCE was introduced, offering advantages such as simplified fabrication steps, accelerated manufacturing processes, reduced material requirements, and cost-effectiveness. In the following, different back contact materials (ITO, IZO, IOH) were tested, with IOH exhibiting the best performance with a PCE of 31.14%. Additionally, applying Albedo light to the back contact increased PCE from 14.31% to 18.21%. To further enhance PCE by minimizing losses from Fresnel reflection, MgF2 anti-reflection layers with an optimal thickness of 80 (100) nm were applied on front (back) contacts. Results showed that adding these layers increased PCE to 19.69%. Consequently, incorporating anti-reflection layers on both sides of the contacts resulted in an 8% increase in PCE.
  2. بررسی تاثیر توری براگ غیر‌فعال بر عملکرد لیزر نیمه‌هادی
    2022
    رشد روزافزون فناوری اطلاعات و سرعت بالای افزایش حجم ترافیک شبکه‌های مخابراتی ‌و اینترنت مستلزم تکامل مستمر آن است. مخابرات نوری به دلیل پهنای باند زیاد آن در آینده‌ی صنعت ارتباطات نقش اساسی دارد و لیزرها بخش اصلی و کلیدی فرستنده‌های نوری را تشکیل می‌دهند. از این رو طراحی مناسب لیزر‌ها تاثیر به‌سزایی در عملکرد سیستم‌های مخابرات نوری دارد. در این میان، لیزرهای بازتابنده براگ توزیع‌شده (DBR) به دلیل دارا بودن ساختار تناوبی در شبکه‌های ارتباطات نوری پیشرفته نقش اساسی دارند؛ زیرا ساختار فرکانس‌گزین و تک‌مد آن‌ها از ارسال توان در فرکانس‌های ناخواسته جلوگیری می‌کند. معمولا ساختار لیزرهای بازتابنده ‌براگ‌ توزیع‌شده بر‌اساس چینش InGaAs/InGaAsP/InP طراحی می‌شود. اگر در یک لیزر فابری- پرو (FP) به‌جای یک یا هر دو آینه کاواک از بازتابنده‌های براگ توزیع‌شده استفاده شود، لیزر طراحی شده لیزر DBR نامیده می‌شود. این نوع لیزرها از سه بخش جدا تشکیل شده‌اند که هر بخش به‌طور جداگانه توسط یک الکترود برای کنترل بهره، فاز و طول موج توری براگ به‌‌طور مستقل قابل کنترل است. در این نوع لیزر طول موج براگ (λ_B) بیشترین بازتاب را دارد و نزدیک‌ترین مود ‌طولی کاواک به λ_B کمترین تلفات را دارد. ساختار این نوع لیزرها برای اتصال به‌سایر ادوات، مانند بخش‌های جداگانه برای تنظیم پارامترهای لیزر یا مدولاسیون، مناسب می‌باشد. در این پایان‌نامه برای شبیه‌سازی و تحلیل لیزرهای FP و DBR از نرم‌افزار لومریکال ماژول اینترکانکت استفاده شده است. طراحی لیزرها در فرکانس 414/193 ترا‌هرتز انجام شده، و عنصر توری براگ با ثابت شبکه 194 نانومتر و ضریب شکست موثر 4 تنظیم شده است. برای تحریک نوری محیط فعال و به‌دست آوردن ضریب عبور لیزر FP و ضریب بازتاب لیزر DBR از یک تحلیل‌گر نوری شبکه استفاده شده و طیف حالت پایدار، توان خروجی آنی لیزر، و چگالی حامل‌های محیط بهره مورد مطالعه قرار گرفته‌اند. علاوه‌بر این، اثرات تغییر ثابت شبکه توری و تغییر دما بر طیف خروجی لیزر بررسی شده‌اند. نتایج شبیه‌سازی نشان می‌دهد که میزان توان گسیل‌شده حول فرکانس مرکزی در لیزرهای FP و DBR به‌ترتیب حدود dBm 4.48049 و dBm 11.3619 می‌باشد، که این نشان‌دهنده افزایش توان خروجی در لیزر DBRنسبت به لیزر FP به میزان dB 6.88 می‌باشد. در ادامه با تنظیم جریان‌های تزریقی به بخش‌های فاز و توری، چند طراحی بهینه برای جبران‌سازی اثر تغییرات ثابت شبکه توری براگ و دمای لیزر DBR انجام شده است.