18. Power Spectrum

For a deterministic signal $x(t)$, the spectrum is well defined: If $X(\omega)$ represents its Fourier transform, i.e., if

$$X(\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t} \, dt,$$ \hspace{1cm} (18-1)

then $|X(\omega)|^2$ represents its energy spectrum. This follows from Parseval’s theorem since the signal energy is given by

$$\int_{-\infty}^{+\infty} x^2(t) \, dt = \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(\omega)|^2 \, d\omega = E.$$ \hspace{1cm} (18-2)

Thus $|X(\omega)|^2 \Delta \omega$ represents the signal energy in the band $(\omega, \omega + \Delta \omega)$ (see Fig 18.1).
However for stochastic processes, a direct application of (18-1) generates a sequence of random variables for every ω. Moreover, for a stochastic process, $E\{|X(t)|^2\}$ represents the ensemble average power (instantaneous energy) at the instant t.

To obtain the spectral distribution of power versus frequency for stochastic processes, it is best to avoid infinite intervals to begin with, and start with a finite interval $(-T, T)$ in (18-1). Formally, partial Fourier transform of a process $X(t)$ based on $(-T, T)$ is given by

$$X_T(\omega) = \int_{-T}^{T} X(t)e^{-j\omega t} \, dt$$ \hspace{1cm} (18-3)

so that

$$\frac{|X_T(\omega)|^2}{2T} = \frac{1}{2T} \left| \int_{-T}^{T} X(t)e^{-j\omega t} \, dt \right|^2$$ \hspace{1cm} (18-4)

represents the power distribution associated with that realization based on $(-T, T)$. Notice that (18-4) represents a random variable for every ω, and its ensemble average gives, the average power distribution based on $(-T, T)$. Thus
$$ P_T(\omega) = E \left\{ \left| \frac{X_T(\omega)}{2T} \right|^2 \right\} = \frac{1}{2T} \int_{-T}^{T} \int_{-T}^{T} E \{X(t_1)X^*(t_2)\} e^{-j\omega(t_1-t_2)} dt_1 dt_2 $$

$$ = \frac{1}{2T} \int_{-T}^{T} \int_{-T}^{T} R_{xx}(t_1,t_2)e^{-j\omega(t_1-t_2)} dt_1 dt_2 $$

(18-5)

represents the power distribution of $X(t)$ based on $(-T, T)$. For wide sense stationary (w.s.s) processes, it is possible to further simplify (18-5). Thus if $X(t)$ is assumed to be w.s.s, then $R_{xx}(t_1,t_2) = R_{xx}(t_1-t_2)$ and (18-5) simplifies to

$$ P_T(\omega) = \frac{1}{2T} \int_{-T}^{T} \int_{-T}^{T} R_{xx}(t_1-t_2)e^{-j\omega(t_1-t_2)} dt_1 dt_2. $$

Let $\tau = t_1-t_2$ and proceeding as in (14-24), we get

$$ P_T(\omega) = \frac{1}{2T} \int_{-2T}^{2T} R_{xx}(\tau)e^{-j\omega\tau} (2T-|\tau|) d\tau $$

$$ = \int_{-2T}^{2T} R_{xx}(\tau)e^{-j\omega\tau} (1-|\tau|/2T) d\tau \geq 0 $$

(18-6)

to be the power distribution of the w.s.s. process $X(t)$ based on $(-T, T)$. Finally letting $T \rightarrow \infty$ in (18-6), we obtain
The power spectral density $S_{xx}(\omega)$ of the w.s.s process $X(t)$ is defined as

$$S_{xx}(\omega) = \lim_{T \to \infty} P_T(\omega) = \int_{-\infty}^{+\infty} R_{xx}(\tau)e^{-j\omega \tau} d\tau \geq 0 \quad (18-7)$$

to be the *power spectral density* of the w.s.s process $X(t)$. Notice that

$$R_{xx}(\omega) \xleftrightarrow{F.T} S_{xx}(\omega) \geq 0. \quad (18-8)$$
i.e., the autocorrelation function and the power spectrum of a w.s.s process form a Fourier transform pair, a relation known as the **Wiener-Khinchin Theorem**. From (18-8), the inverse formula gives

$$R_{xx}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} S_{xx}(\omega)e^{j\omega \tau} d\omega \quad (18-9)$$

and in particular for $\tau = 0$, we get

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} S_{xx}(\omega)d\omega = R_{xx}(0) = E\{|X(t)|^2\} = P, \quad \text{the total power.} \quad (18-10)$$

From (18-10), the area under $S_{xx}(\omega)$ represents the total power of the process $X(t)$, and hence $S_{xx}(\omega)$ truly represents the power spectrum. (Fig 18.2).
The nonnegative-definiteness property of the autocorrelation function in (14-8) translates into the “nonnegative” property for its Fourier transform (power spectrum), since from (14-8) and (18-9)

$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j^* R_{xx}(t_i - t_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j^* \frac{1}{2\pi} \int_{-\infty}^{+\infty} S_{xx}(\omega)e^{j\omega(t_i - t_j)} d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} S_{xx}(\omega) \left| \sum_{i=1}^{n} a_i e^{j\omega t_i} \right|^2 d\omega \geq 0. \quad (18-11)$$

From (18-11), it follows that

$$R_{xx}(\tau) \text{ nonnegative-definite } \iff S_{xx}(\omega) \geq 0. \quad (18-12)$$

PILLAI
If $X(t)$ is a real w.s.s process, then $R_{XX}(\tau) = R_{XX}(-\tau)$ so that

$$S_{XX}(\omega) = \int_{-\infty}^{+\infty} R_{XX}(\tau)e^{-j\omega\tau} d\tau$$

$$= \int_{-\infty}^{+\infty} R_{XX}(\tau)\cos \omega \tau d\tau$$

$$= 2\int_{0}^{\infty} R_{XX}(\tau)\cos \omega \tau d\tau = S_{XX}(-\omega) \geq 0 \quad (18-13)$$

so that the power spectrum is an even function, (in addition to being real and nonnegative).
\[
\int_{-T}^{T} \int_{-T}^{T} R_{xx}(t_1 - t_2) dt_1 dt_2.
\]

Comment on Slide 3:
As \(t_1, t_2 \) varies from \(-T\) to \(+T\), \(\tau = t_1 - t_2 \) varies from \(-2T\) to \(+2T\). Moreover, \(R_{xx}(\tau) \) is a constant over the shaded region, whose area is given by

\[
\frac{1}{2} (2T - \tau)^2 - \frac{1}{2} (2T - \tau - d\tau)^2 = (2T - \tau)d\tau
\]

and hence the above integral reduces to

\[
\int_{-2T}^{2T} R_{xx}(\tau)(2T - |\tau|) d\tau = \frac{1}{2T} \int_{-2T}^{2T} R_{xx}(\tau)(1 - \frac{|\tau|}{2T}) d\tau.
\]

(PILLAI/Cha)
Power Spectra and Linear Systems

If a w.s.s process $X(t)$ with autocorrelation function $R_{xx}(\tau) \leftrightarrow S_{xx}(\tau) \geq 0$ is applied to a linear system with impulse response $h(t)$, then the cross correlation function $R_{xy}(\tau)$ and the output autocorrelation function $R_{yy}(\tau)$ are given by (14-40)-(14-41). From there

$$R_{xy}(\tau) = R_{xx}(\tau) * h^*(-\tau), \quad R_{yy}(\tau) = R_{xx}(\tau) * h^*(-\tau) * h(\tau).$$ (18-14)

But if

$$f(t) \leftrightarrow F(\omega), \quad g(t) \leftrightarrow G(\omega)$$ (18-15)

Then

$$f(t) * g(t) \leftrightarrow F(\omega)G(\omega)$$ (18-16)

since

$$\mathcal{F}\{f(t) * g(t)\} = \int_{-\infty}^{+\infty} f(t) * g(t)e^{-j\omega t} dt$$
\[\mathcal{F}\{f(t) * g(t)\} = \int_{-\infty}^{+\infty} \left(\int_{-\infty}^{+\infty} f(\tau) g(t-\tau)d\tau \right) e^{-j\omega t} dt \]

\[= \int_{-\infty}^{+\infty} f(\tau) e^{-j\omega \tau} d\tau \int_{-\infty}^{+\infty} g(t-\tau) e^{-j\omega (t-\tau)} d(t-\tau) \]

\[= F(\omega)G(\omega). \]

(18-17)

Using (18-15)-(18-17) in (18-14) we get

\[S_{xy}(\omega) = \mathcal{F}\{R_{xx}(\omega) * h^*(-\tau)\} = S_{xx}(\omega)H^*(\omega) \]

(18-18)

since

\[\int_{-\infty}^{+\infty} h^*(-\tau) e^{-j\omega \tau} d\tau = \left(\int_{-\infty}^{+\infty} h(t) e^{-j\omega t} dt \right)^* = H^*(\omega), \]

where

\[H(\omega) = \int_{-\infty}^{+\infty} h(t) e^{-j\omega t} dt \]

(18-19)

represents the transfer function of the system, and

\[S_{yy}(\omega) = \mathcal{F}\{R_{yy}(\tau)\} = S_{xy}(\omega)H(\omega) \]

\[= S_{xx}(\omega) |H(\omega)|^2. \]

(18-20)
From (18-18), the cross spectrum need not be real or nonnegative; However the output power spectrum is real and nonnegative and is related to the input spectrum and the system transfer function as in (18-20). Eq. (18-20) can be used for system identification as well.

W.S.S White Noise Process: If \(W(t) \) is a w.s.s white noise process, then from (14-43)

\[
R_{ww}(\tau) = q \delta(\tau) \implies S_{ww}(\omega) = q. \tag{18-21}
\]

Thus the spectrum of a white noise process is flat, thus justifying its name. **Notice that a white noise process is unrealizable since its total power is indeterminate.**

From (18-20), if the input to an unknown system in Fig 18.3 is a white noise process, then the output spectrum is given by

\[
S_{yy}(\omega) = q |H(\omega)|^2 \tag{18-22}
\]

Notice that the output spectrum captures the system transfer function characteristics entirely, and for rational systems Eq (18-22) may be used to determine the pole/zero locations of the underlying system.
Example 18.1: A w.s.s white noise process $W(t)$ is passed through a low pass filter (LPF) with bandwidth $B/2$. Find the autocorrelation function of the output process.

Solution: Let $X(t)$ represent the output of the LPF. Then from (18-22)

$$S_{xx}(\omega) = q |H(\omega)|^2 = \begin{cases} q, & |\omega| \leq B/2 \\ 0, & |\omega| > B/2 \end{cases} \quad (18-23)$$

Inverse transform of $S_{xx}(\omega)$ gives the output autocorrelation function to be

$$R_{xx}(\tau) = \int_{-B/2}^{B/2} S_{xx}(\omega)e^{j\omega\tau}d\omega = q\int_{-B/2}^{B/2} e^{j\omega\tau}d\omega$$

$$= qB \frac{\sin(B\tau/2)}{(B\tau/2)} = qB \text{sinc}(B\tau/2) \quad (18-24)$$

![Fig. 18.4](image-url)
Eq (18-23) represents colored noise spectrum and (18-24) its autocorrelation function (see Fig 18.4).

Example 18.2: Let

\[Y(t) = \frac{1}{2T} \int_{t-T}^{t+T} X(\tau)d\tau \quad (18-25) \]

represent a “smoothing” operation using a moving window on the input process \(X(t) \). Find the spectrum of the output \(Y(t) \) in term of that of \(X(t) \).

Solution: If we define an LTI system with impulse response \(h(t) \) as in Fig 18.5, then in term of \(h(t) \), Eq (18-25) reduces to

\[Y(t) = \int_{-\infty}^{+\infty} h(t-\tau)X(\tau)d\tau = h(t) * X(t) \quad (18-26) \]

so that

\[S_{yy}(\omega) = S_{xx}(\omega)|H(\omega)|^2. \quad (18-27) \]

Here

\[H(\omega) = \int_{-T}^{+T} \frac{1}{2T} e^{-j\omega t} dt = \text{sinc}(\omega T) \quad (18-28) \]

PILLAI
so that

\[S_{yy}(\omega) = S_{xx}(\omega) \text{sinc}^2(\omega T). \]

(18-29)

Fig 18.6

Notice that the effect of the smoothing operation in (18-25) is to suppress the high frequency components in the input (beyond \(\pi / T \)), and the equivalent linear system acts as a low-pass filter (continuous-time moving average) with bandwidth \(2\pi / T \) in this case.