Markov Chains
Summary

- Markov Chains
- Discrete Time Markov Chains
 - Homogeneous and non-homogeneous Markov chains
 - Transient and steady state Markov chains
- Continuous Time Markov Chains
 - Homogeneous and non-homogeneous Markov chains
 - Transient and steady state Markov chains
Markov Processes

- The definition of a Markov Process
 - The future of process $X(t)$ does not depend on its past, only on its present
 \[
 \Pr\left\{ X(t_{k+1}) = x_{k+1} \mid X(t_k) = x_k, \ldots, X(t_0) = x_0 \right\} = \Pr\left\{ X(t_{k+1}) \leq x_{k+1} \mid X(t_k) = x_k \right\}
 \]
 - Since we are dealing with “chains”, $X(t)$ can take discrete values from a finite or a countable infinite set.

- For a discrete-time Markov chain, the notation is also simplified to
 \[
 \Pr\left\{ X_{k+1} = x_{k+1} \mid X_k = x_k, \ldots, X_0 = x_0 \right\} = \Pr\left\{ X_{k+1} = x_{k+1} \mid X_k = x_k \right\}
 \]
 - Where x_k is the value of the state at the kth step
Transition Probability

- Define the one-step transition probabilities

\[p_{ij}(k) = \Pr\{X_{k+1} = j \mid X_k = i\} \]

- Clearly, for all \(i, k\), and all feasible transitions from state \(i\)

\[\sum_{j \in \Gamma(i)} p_{ij}(k) = 1 \]

- Define the \(n\)-step transition probabilities

\[p_{ij}(k, k+n) = \Pr\{X_{k+n} = j \mid X_k = i\} \]
Chapman-Kolmogorov Equations

- Using total probability
 \[p_{ij}(k, k+n) = \sum_{r=1}^{R} \Pr\{X_{k+n} = j \mid X_u = r, X_k = i\} \Pr\{X_u = r \mid X_k = i\} \]

- Using the memoryless property of Markov chains
 \[\Pr\{X_{k+n} = j \mid X_u = r, X_k = i\} = \Pr\{X_{k+n} = j \mid X_u = r\} \]

- Therefore, we obtain the Chapman-Kolmogorov Equation
 \[p_{ij}(k, k+n) = \sum_{r=1}^{R} p_{ir}(k,u) p_{rj}(u, k+n), \quad k \leq u \leq k + n \]
Matrix Form

- Define the matrix
 \[H(k, k+n) = \left[p_{ij}(k, k+n) \right] \]

- We can re-write the Chapman-Kolmogorov Equation
 \[H(k, k+n) = H(k, u)H(u, k+n) \]

- Choose, \(u = k+n-1 \), then
 \[H(k, k+n) = H(k, k+n-1)H(k+n-1, k+n) = H(k, k+n-1)P(k+n-1) \]

Forward Chapman-Kolmogorov

One step transition probability
Matrix Form

Choose, \(u = k+1 \), then

\[
H(k, k+n) = H(k, k+1)H(k+1, k+n) = P(k)H(k+1, k+n)
\]

Backward Chapman-Kolmogorov

One step transition probability
Homogeneous Markov Chains

- The one-step transition probabilities are independent of time k.

 $$P(k) = P \quad \text{or} \quad \begin{bmatrix} p_{ij} \end{bmatrix} = \begin{bmatrix} \Pr\{X_{k+1} = j \mid X_k = i\} \end{bmatrix}$$

- Even though the one step transition is independent of k, this does not mean that the joint probability of X_{k+1} and X_k is also independent of k

 Note that

 $$\Pr\{X_{k+1} = j, X_k = i\} = \Pr\{X_{k+1} = j \mid X_k = i\} \Pr\{X_k = i\}$$

 $$= p_{ij} \Pr\{X_k = i\}$$
Example

Consider a two processor computer system where, time is divided into time slots and that operates as follows

- At most one job can arrive during any time slot and this can happen with probability α.
- Jobs are served by whichever processor is available, and if both are available then the job is given to processor 1.
- If both processors are busy, then the job is lost.
- When a processor is busy, it can complete the job with probability β during any one time slot.
- If a job is submitted during a slot when both processors are busy but at least one processor completes a job, then the job is accepted (departures occur before arrivals).

Describe the Markov Chain that describe this model.
Example: Markov Chain

For the State Transition Diagram of the Markov Chain, each transition is simply marked with the transition probability

\[p_{00} = (1 - \alpha) \]
\[p_{01} = \alpha \]
\[p_{02} = 0 \]
\[p_{10} = \beta (1 - \alpha) \]
\[p_{11} = (1 - \beta)(1 - \alpha) + \alpha \beta \]
\[p_{12} = \alpha (1 - \beta) \]
\[p_{20} = \beta^2 (1 - \alpha) \]
\[p_{21} = \beta^2 \alpha + 2 \beta (1 - \beta)(1 - \alpha) \]
\[p_{22} = (1 - \beta)^2 + 2 \alpha \beta (1 - \beta) \]
Example: Markov Chain

Suppose that $\alpha = 0.5$ and $\beta = 0.7$, then,

$$
\begin{bmatrix}
0.5 & 0.5 & 0 \\
0.35 & 0.5 & 0.15 \\
0.245 & 0.455 & 0.3
\end{bmatrix}
$$
State Holding Times

- Suppose that at point k, the Markov Chain has transitioned into state $X_k = i$. An interesting question is how long it will stay at state i.

- Let $V(i)$ be the random variable that represents the number of time slots that $X_k = i$.

- We are interested on the quantity $\Pr\{V(i) = n\}$

\[
\Pr\{V(i) = n\} = \Pr\{X_{k+n} \neq i, X_{k+n-1} = i, \ldots, X_{k+1} = i \mid X_k = i\}
\]

\[
= \Pr\{X_{k+n} \neq i \mid X_{k+n-1} = i, \ldots, X_k = i\} \times
\]

\[
\Pr\{X_{k+n-1} = i, \ldots, X_{k+1} = i \mid X_k = i\}
\]

\[
= \Pr\{X_{k+n} \neq i \mid X_{k+n-1} = i\} \times
\]

\[
\Pr\{X_{k+n-1} = i \mid X_{k+n-2} \ldots, X_k = i\} \times
\]

\[
\Pr\{X_{k+n-2} = i, \ldots, X_{k+1} = i \mid X_k = i\}
\]
State Holding Times

\[
\Pr\{V(i) = n\} = \Pr\left\{ X_{k+n} \neq i \mid X_{k+n-1} = i \right\} \times \\
\Pr\left\{ X_{k+n-1} = i \mid X_{k+n-2}, \ldots, X_k = i \right\} \times \\
\Pr\left\{ X_{k+n-2} = i, \ldots, X_{k+1} = i \mid X_k = i \right\} = (1 - p_{ii}) \Pr\left\{ X_{k+n-1} = i \mid X_{k+n-2} = i \right\} \times \\
\Pr\left\{ X_{k+n-2} = i \mid X_{k+n-3} = i, \ldots, X_k = i \right\} \\
\Pr\left\{ X_{k+n-3} = i, \ldots, X_{k+1} = i \mid X_k = i \right\}
\]

\[
\Pr\{V(i) = n\} = (1 - p_{ii}) \sum_{n=0}^{\infty} p_{ii}^n
\]

- This is the Geometric Distribution with parameter \(p_{ii} \).
- Clearly, \(V(i) \) has the memoryless property
An interesting quantity we are usually interested in is the probability of finding the chain at various states, i.e., we define
\[\pi_i(k) \equiv \Pr\{X_k = i\} \]

For all possible states, we define the vector
\[\pi(k) = [\pi_0(k), \pi_1(k), \ldots] \]

Using total probability we can write
\[\pi_j(k) = \sum_i \Pr\{X_k = j \mid X_{k-1} = i\} \Pr\{X_{k-1} = i\} \]
\[= \sum_i p_{ij}(k) \pi_i(k-1) \]

In vector form, one can write
\[\pi(k) = \pi(k-1) P(k) \]
Or, if homogeneous Markov Chain
\[\pi(k) = \pi(k-1) P \]
State Probabilities Example

- Suppose that
 \[P = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.35 & 0.5 & 0.15 \\ 0.245 & 0.455 & 0.3 \end{bmatrix} \]
 with \(\pi(0) = [1 \ 0 \ 0] \)

- Find \(\pi(k) \) for \(k=1,2,… \)

 \[\pi(1) = [1 \ 0 \ 0] \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.35 & 0.5 & 0.15 \\ 0.245 & 0.455 & 0.3 \end{bmatrix} = [0.5 \ 0.5 \ 0] \]

- Transient behavior of the system: MCTransient.m

- In general, the transient behavior is obtained by solving the difference equation

 \[\pi(k) = \pi(k-1)P \]
Classification of States

Definitions

- State j is **reachable** from state i if the probability to go from i to j in $n > 0$ steps is greater than zero (State j is reachable from state i if in the state transition diagram there is a path from i to j).

- A subset S of the state space X is **closed** if $p_{ij} = 0$ for every $i \in S$ and $j \notin S$.

- A state i is said to be **absorbing** if it is a single element closed set.

- A closed set S of states is **irreducible** if any state $j \in S$ is reachable from every state $i \in S$.

- A Markov chain is said to be **irreducible** if the state space X is irreducible.
Example

- **Irreducible Markov Chain**

 ![Irreducible Markov Chain Diagram]

- **Reducible Markov Chain**

 ![Reducible Markov Chain Diagram]

 - Absorbing State
 - Closed irreducible set

17
Transient and Recurrent States

- **Hitting Time** \(T_{ij} = \min \{k > 0 : X_0 = i, X_k = j\} \)

- **Recurrence Time** \(T_{ii} \) is the first time that the MC returns to state \(i \).

- Let \(\rho_i \) be the probability that the state will return back to \(i \) given it starts from \(i \). Then,
 \[
 \rho_i = \sum_{k=1}^{\infty} \Pr\{T_{ii} = k\}
 \]

- The event that the MC will return to state \(i \) given it started from \(i \) is equivalent to \(T_{ii} < \infty \), therefore we can write
 \[
 \rho_i = \sum_{k=1}^{\infty} \Pr\{T_{ii} = k\} = \Pr\{T_{ii} < \infty\}
 \]

- A state is **recurrent** if \(\rho_i = 1 \) and **transient** if \(\rho_i < 1 \)
Theorems

- If a Markov Chain has finite state space, then at least one of the states is recurrent.

- If state i is recurrent and state j is reachable from state i then, state j is also recurrent.

- If S is a finite closed irreducible set of states, then every state in S is recurrent.
Positive and Null Recurrent States

- Let M_i be the mean recurrence time of state i

$$M_i \equiv E[T_{ii}] = \sum_{k=1}^{\infty} k \Pr\{T_{ii} = k\}$$

- A state is said to be **positive recurrent** if $M_i < \infty$. If $M_i = \infty$ then the state is said to be **null-recurrent**.

- Theorems
 - If state i is positive recurrent and state j is reachable from state i then, state j is also positive recurrent.
 - If S is a closed irreducible set of states, then every state in S is positive recurrent or, every state in S is null recurrent, or, every state in S is transient.
 - If S is a finite closed irreducible set of states, then every state in S is positive recurrent.
Example

Transient States

Recurrent States

Positive Recurrent States
Periodic and Aperiodic States

- Suppose that the structure of the Markov Chain is such that state i is visited after a number of steps that is an integer multiple of an integer $d > 1$. Then the state is called periodic with period d.
- If no such integer exists (i.e., $d = 1$) then the state is called aperiodic.
- Example

\[
P = \begin{bmatrix}
0 & 1 & 0 \\
0.5 & 0 & 0.5 \\
0 & 1 & 0
\end{bmatrix}
\]

Periodic State $d = 2$
Steady State Analysis

- Recall that the probability of finding the MC at state i after the kth step is given by
 \[\pi_i(k) \equiv \Pr\{X_k = i\} \quad \pi(k) = [\pi_0(k), \pi_1(k), \ldots] \]

- An interesting question is what happens in the “long run”, i.e.,
 \[\pi_i \equiv \lim_{k \to \infty} \pi_i(k) \]

- This is referred to as steady state or equilibrium or stationary state probability

Questions:
- Do these limits exists?
- If they exist, do they converge to a legitimate probability distribution, i.e., \[\sum \pi_i = 1 \]
- How do we evaluate π_j, for all j.

23
Steady State Analysis

- Recall the recursive probability
 \[\pi(k+1) = \pi(k)P \]
- If steady state exists, then \(\pi(k+1) \approx \pi(k) \), and therefore the steady state probabilities are given by the solution to the equations
 \[\pi = \pi P \quad \text{and} \quad \sum \pi_i = 1 \]
- If an Irreducible Markov Chain the presence of periodic states prevents the existence of a steady state probability
- Example: *periodic.m*

\[
P = \begin{bmatrix}
0 & 1 & 0 \\
0.5 & 0 & 0.5 \\
0 & 1 & 0
\end{bmatrix} \quad \pi(0) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}
\]
Steady State Analysis

THEOREM: In an irreducible aperiodic Markov chain consisting of positive recurrent states a unique stationary state probability vector π exists such that $\pi_j > 0$ and

$$\pi_j = \lim_{k \to \infty} \pi_j(k) = \frac{1}{M_j}$$

where M_j is the mean recurrence time of state j

- The steady state vector π is determined by solving
 $$\pi = \pi P$$
 and
 $$\sum_i \pi_i = 1$$

- Ergodic Markov chain.
Birth-Death Example

Thus, to find the steady state vector π we need to solve

$$\pi = \pi P \quad \text{and} \quad \sum_i \pi_i = 1$$
Birth-Death Example

- In other words
 \[\pi_0 = \pi_0 p + \pi_1 p \]
 \[\pi_j = \pi_{j-1} (1 - p) + \pi_{j+1} p, \quad j = 1, 2, \ldots \]

- Solving these equations we get
 \[\pi_1 = \frac{1 - p}{p} \pi_0 \]
 \[\pi_2 = \left(\frac{1 - p}{p} \right)^2 \pi_0 \]

- In general
 \[\pi_j = \left(\frac{1 - p}{p} \right)^j \pi_0 \]

- Summing all terms we get
 \[\pi_0 \sum_{i=0}^{\infty} \left(\frac{1 - p}{p} \right)^i = 1 \Rightarrow \pi_0 = \frac{1}{\sum_{i=0}^{\infty} \left(\frac{1 - p}{p} \right)^i} \]
Birth-Death Example

Therefore, for all states \(j \) we get

\[
\pi_j = \left(\frac{1-p}{p} \right)^j \frac{1}{\sum_{i=0}^{\infty} \left(\frac{1-p}{p} \right)^i}
\]

1. If \(p < 1/2 \), then

\[
\sum_{i=0}^{\infty} \left(\frac{1-p}{p} \right)^i = \infty
\]

\(\Rightarrow \pi_j = 0, \) for all \(j \)

All states are transient

2. If \(p > 1/2 \), then

\[
\sum_{i=0}^{\infty} \left(\frac{1-p}{p} \right)^i = \frac{p}{2p-1} > 0
\]

\(\Rightarrow \pi_j = \frac{2p-1}{p} \left(\frac{1-p}{p} \right)^j, \) for all \(j \)

All states are positive recurrent
Birth-Death Example

- If $p=1/2$, then
 \[
 \sum_{i=0}^{\infty} \left(\frac{1-p}{p} \right)^i = \infty
 \]

 \[
 \Rightarrow \pi_j = 0, \quad \text{for all } j
 \]

 All states are *null recurrent*
Reducible Markov Chains

- In steady state, we know that the Markov chain will eventually end in an irreducible set and the previous analysis still holds, or an absorbing state.
- The only question that arises, in case there are two or more irreducible sets, is the probability it will end in each set.
Suppose we start from state i. Then, there are two ways to go to S.
- In one step or
- Go to $r \in T$ after k steps, and then to S.

Define
\[
\rho_i(S) = \Pr\{X_k \in S \mid X_0 = i\}, \ k = 1, 2, \ldots
\]
Reducible Markov Chains

- First consider the one-step transition
 \[
 \Pr\{X_1 \in S \mid X_0 = i\} = \sum_{j \in S} p_{ij}
 \]

- Next consider the general case for \(k=2,3,\ldots\)
 \[
 \Pr\{X_k \in S, X_{k-1} = r_{k-1} \in T, \ldots, X_1 = r \in T \mid X_0 = i\} = \\
 = \Pr\{X_k \in S, X_{k-1} = r_{k-1} \in T, \ldots, X_1 = r \in T, X_0 = i\} \\
 \times \Pr\{X_1 = r \in T \mid X_0 = i\} = \\
 = \Pr\{X_k \in S, X_{k-1} = r_{k-1} \in T, \ldots, X_1 = r \in T\} p_{ir} \\
 \Rightarrow \rho_i(S) = \sum_{j \in S} p_{ij} + \sum_{r \in T} \rho_r(S) p_{ir}
 \]
Continuous-Time Markov Chains

- In this case, transitions can occur at any time.
- Recall the Markov (memoryless) property:
 \[
 \Pr\{X(t_{k+1}) = x_{k+1} \mid X(t_k) = x_k, \ldots, X(t_0) = x_0\} = \Pr\{X(t_{k+1}) = x_{k+1} \mid X(t_k) = x_k\}
 \]
 where \(t_1 < t_2 < \ldots < t_k \).
- Recall that the Markov property implies that:
 - \(X(t_{k+1}) \) depends only on \(X(t_k) \) (state memory).
 - It does not matter how long the state at \(X(t_k) \) (age memory).
- The transition probabilities now need to be defined for every time instant as \(p_{ij}(t) \), i.e., the probability that the MC transitions from state \(i \) to \(j \) at time \(t \).
Transition Function

- Define the transition function
 \[p_{ij}(s,t) \equiv \Pr \{ X(t) = j \mid X(s) = i \}, \quad s \leq t \]

- The continuous-time analogue of the Chapman-Kolmokorov equation is
 \[p_{ij}(s,t) \equiv \sum_r \Pr \{ X(t) = j \mid X(u) = r, X(s) = i \} \Pr \{ X(u) = r \mid X(s) = i \} \]

- Using the memoryless property
 \[p_{ij}(s,t) \equiv \sum_r \Pr \{ X(t) = j \mid X(u) = r \} \Pr \{ X(u) = r \mid X(s) = i \} \]

- Define \(H(s,t) = [p_{ij}(s,t)], \, i,j=1,2,\ldots \) then
 \[H(s,t) = H(s,u)H(u,t), \quad s \leq u \leq t \]

- Note that \(H(s,s) = I \)
Transition Rate Matrix

Consider the Chapman-Kolmogorov for $s \leq t \leq t + \Delta t$

$$H(s, t + \Delta t) = H(s, t)H(t, t + \Delta t)$$

Subtracting $H(s, t)$ from both sides and dividing by Δt

$$\frac{H(s, t + \Delta t) - H(s, t)}{\Delta t} = \frac{H(s, t)(H(t, t + \Delta t) - I)}{\Delta t}$$

Taking the limit as $\Delta t \to 0$

$$\frac{\partial H(s, t)}{\partial t} = H(s, t)Q(t)$$

where the transition rate matrix $Q(t)$ is given by

$$Q(t) = \lim_{\Delta t \to 0} \frac{H(t, t + \Delta t) - I}{\Delta t}$$
Homogeneous Case

In the homogeneous case, the transition functions do not depend on s and t, but only on the difference $t-s$ thus

$$p_{ij}(s, t) = p_{ij}(t - s)$$

It follows that

$$H(s, t) = H(t - s) \equiv P(\tau)$$

and the transition rate matrix

$$Q(t) = \lim_{\Delta t \to 0} \frac{H(t, t + \Delta t) - I}{\Delta t} = \lim_{\Delta t \to 0} \frac{H(\Delta t) - I}{\Delta t} = Q, \quad \text{constant}$$

Thus

$$\frac{\partial P(t)}{\partial t} = P(t)Q \quad \text{with} \quad p_{ij}(0) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \quad \Rightarrow \quad P(t) = e^{Qt}$$
State Holding Time

All Markov processes share the interesting property that the time it takes for a change of state (sojourn time) is an exponentially-distributed random variable. To see this, let τ_i represent the waiting time for a change of state for a Markov process $x(t)$, given that it is in state e_i at time t_0. If $\tau_i > s$, then the process will be in the same state e_i at time $t_0 + s$ as at t_0, and (being a Markov process) its subsequent behavior is independent of s. Hence

$$P\{\tau_i > t + s \mid \tau_i > s\} = P\{\tau_i > t\} \overset{\Delta}{=} \varphi_i(t)$$

(16-8)
State Holding Time

represents the probability that the event \(\{ \tau_i > t + s \} \) given that \(\{ \tau_i > s \} \). But

\[
\varphi_i(t + s) = P\{ \tau_i > t + s \} = P\{ \tau_i > t + s, \tau_i > s \} = P\{ \tau_i > t + s \mid \tau_i > s \} P\{ \tau_i > s \} = \varphi_i(t) \varphi_i(s)
\]

or

\[
\log \varphi_i(t + s) = \log \varphi_i(t) + \log \varphi_i(s)
\] (16-9)

Notice that the only function that satisfies (16-9) for arbitrary \(t \) and \(s \) is either of the form \(ct \), where \(c \) is a constant or unbounded in every interval. Thus

\[
\log \varphi_i(t) = -\lambda_i t \quad \varphi_i(t) = P\{ \tau_i > t \} = e^{-\lambda_i t} \quad t \geq 0
\]

or

\[
F_{\tau_i}(t) = P\{ \tau_i \leq t \} = 1 - e^{-\lambda_i t} \quad t \geq 0
\] (16-10)
Transition Rate Matrix Q.

- Recall that
 $$ \frac{\partial P(t)}{\partial t} = P(t) Q $$

- Evaluating this at $t = 0$, we have $P(0) = I$ and then
 $$ \left. \frac{\partial P(t)}{\partial t} \right|_{t=0} = Q \Rightarrow \left. \frac{\partial p_{ij}(t)}{\partial t} \right|_{t=0} = q_{ij} $$

- If $i \neq j$, τ: exponential residual lifetime
 $$ p_{ij}(t) = \Pr\{\tau < t\} = 1 - e^{-\lambda_{ij}t} \Rightarrow \left. \frac{\partial p_{ij}(t)}{\partial t} \right|_{t=0} = q_{ij} = \lambda_{ij} e^{\lambda_{ij}t} \bigg|_{\tau=0} = \lambda_{ij} $$

- In other words q_{ij} is the rate of the Poisson process that activates the event that makes the transition from i to j.

39
Transition Rate Matrix Q.

- If $i = j$, τ: exponential residual lifetime

$$p_{ii}(t) = \Pr\{\tau > t\} = e^{-\lambda_{ii}t} \Rightarrow \left. \frac{\partial p_{ii}(t)}{\partial t} \right|_{t=0} = q_{ii} = -\lambda_{ii} e^{\lambda_{ii}t} \bigg|_{t=0} = -\lambda_{ii}$$

$$\left. \frac{\partial p_{ii}(t)}{\partial t} \right|_{t=0} = q_{ii} \Leftrightarrow \frac{\partial}{\partial t} \left[1 - p_{ii}(t) \right] \bigg|_{t=0} = -q_{ii} = \lambda_{ii}$$

- Note that for each row i, the sum

$$\sum_j p_{ij}(t) = 1 \Rightarrow \sum_j q_{ij} = 0$$
Transition Probabilities \mathbf{P}.

- Suppose that state transitions occur at random points in time $T_1 < T_2 < \ldots < T_k < \ldots$
- Let X_k be the state after the transition at T_k
- Define
 \[P_{ij} = \Pr\{X_{k+1} = j \mid X_k = i\} \]
- Recall that in the case of the superposition of two or more Poisson processes, the probability that the next event is from process j is given by λ_j/Λ.
- In this case, we have
 \[P_{ij} = \frac{q_{ij}}{-q_{ii}}, \quad i \neq j \quad \text{and} \quad P_{ii} = 0 \]
Example

- Assume a computer system where jobs arrive according to a Poisson process with rate λ.
- Each job is processed using a First In First Out (FIFO) policy.
- The processing time of each job is exponential with rate μ.
- The computer has buffer to store up to two jobs that wait for processing.
- Jobs that find the buffer full are lost.
- Draw the state transition diagram.
- Find the Rate Transition Matrix Q.
- Find the State Transition Matrix P.
Example

The rate transition matrix is given by

\[
Q = \begin{bmatrix}
-\lambda & \lambda & 0 & 0 \\
\mu & -(\lambda + \mu) & \lambda & 0 \\
0 & \mu & -(\lambda + \mu) & \lambda \\
0 & 0 & \mu & -\mu
\end{bmatrix}
\]

The state transition matrix is given by

\[
P = \frac{1}{(\lambda + \mu)} \begin{bmatrix}
0 & (\lambda + \mu) & 0 & 0 \\
\mu & 0 & \lambda & 0 \\
0 & \mu & 0 & \lambda \\
0 & 0 & (\lambda + \mu)^{43} & 0
\end{bmatrix}
\]
State Probabilities and Transient Analysis

- Similar to the discrete-time case, we define
 \[\pi_j(t) \equiv \Pr\{X(t) = j\} \]

- In vector form \(\pi(t) = [\pi_1(t), \pi_2(t),...] \)

- With initial probabilities \(\pi(0) = [\pi_1(0), \pi_2(0),...] \)

- Using our previous notation (for homogeneous MC)
 \[\pi(t) = \pi(0) P(t) = \pi(0) e^{Qt} \]

- Differentiating with respect to \(t \) gives us more “inside”
 \[\frac{d\pi(t)}{dt} = \pi(t) Q \]
 \[\iff \frac{d\pi_j(t)}{dt} = q_{jj}\pi_j(t) + \sum_{i \neq j} q_{ij}\pi_i(t) \]

Note: \((e^{Qt})' = Qe^{Qt} = e^{Qt}Q \)
We view $\pi_j(t)$ as the level of a “probability fluid” that is stored at each node j (0=empty, 1=full).

\[
\frac{d\pi_j(t)}{dt} = q_{jj}\pi_j(t) + \sum_{i \neq j} q_{ij}\pi_i(t) = -\sum_{r \neq j} q_{jr}\pi_j(t) + \sum_{i \neq j} q_{ij}\pi_i(t)
\]

\begin{align*}
\text{Change in the probability fluid} \\
\text{Inflow} \quad q_{ij} \quad q_{jr} \\
\text{Outflow} \quad \text{Outflow} \\
\text{Inflow} \quad \text{Inflow}
\end{align*}

\[-q_{jj} = \sum_{r \neq j} q_{jr}\]
Steady State Analysis

- Often we are interested in the “long-run” probabilistic behavior of the Markov chain, i.e.,
 \[\pi_j = \lim_{t \to \infty} \pi_j(t) \]

- These are referred to as *steady state probabilities* or *equilibrium state probabilities* or *stationary state probabilities*.

- As with the discrete-time case, we need to address the following questions:
 - Under what conditions do the limits exist?
 - If they exist, do they form legitimate probabilities?
 - How can we evaluate these limits?
Steady State Analysis

Theorem: In an irreducible continuous-time Markov Chain consisting of positive recurrent states, a unique stationary state probability vector π with

$$\pi_j = \lim_{t \to \infty} \pi_j(t)$$

These vectors are independent of the initial state probability and can be obtained by solving

$$\pi Q = 0 \quad \text{and} \quad \sum_j \pi_j = 1$$

Using the “probability fluid” view

$$0 = q_{jj} \pi_j(t) + \sum_{i \neq j} q_{ij} \pi_i(t)$$

0 Change

\[0 = q_{jj} \pi_j(t) + \sum_{i \neq j} q_{ij} \pi_i(t)\]
Example

For the previous example, with the above transition function, what are the steady state probabilities

Solve

$\pi Q = \begin{bmatrix} -\lambda & \lambda & 0 & 0 \\ \mu & -(\lambda + \mu) & \lambda & 0 \\ 0 & \mu & -(\lambda + \mu) & \lambda \\ 0 & 0 & \mu & -\mu \end{bmatrix} = 0$

$\pi_0 + \pi_1 + \pi_2 + \pi_3 = 1$
Example

The solution is obtained

\[-\lambda \pi_0 + \mu \pi_1 = 0 \]
\[\Rightarrow \pi_1 = \frac{\lambda}{\mu} \pi_0 \]

\[\lambda \pi_0 - (\lambda + \mu) \pi_1 + \mu \pi_2 = 0 \]
\[\Rightarrow \pi_2 = \left(\frac{\lambda}{\mu}\right)^2 \pi_0 \]

\[\lambda \pi_1 - (\lambda + \mu) \pi_2 + \mu \pi_3 = 0 \]
\[\Rightarrow \pi_3 = \left(\frac{\lambda}{\mu}\right)^3 \pi_0 \]

\[\pi_0 + \pi_1 + \pi_2 + \pi_3 = 1 \Rightarrow \]
\[\pi_0 = \frac{1}{1 + \left(\frac{\lambda}{\mu}\right) + \left(\frac{\lambda}{\mu}\right)^2 + \left(\frac{\lambda}{\mu}\right)^3} \]
Birth-Death Chain

- Find the steady state probabilities
- Similarly to the previous example,

\[Q = \begin{bmatrix}
 -\lambda_0 & \lambda_0 & 0 & \cdots \\
 \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & \cdots \\
 0 & \mu_2 & -(\lambda_2 + \mu_2) & \cdots \\
 \vdots & \vdots & \vdots & \ddots
\end{bmatrix} \]

- And we solve

\[\pi Q = 0 \quad \text{and} \quad \sum_{i=0}^{\infty} \pi_i = 1 \]
Example

- The solution is obtained

\[-\lambda_0 \pi_0 + \mu_1 \pi_1 = 0 \quad \Rightarrow \pi_1 = \frac{\lambda_0}{\mu_1} \pi_0 \]

\[\lambda_0 \pi_0 - (\lambda_1 + \mu_1) \pi_1 + \mu_2 \pi_2 = 0 \quad \Rightarrow \pi_2 = \left(\frac{\lambda_0 \lambda_1}{\mu_1 \mu_2}\right) \pi_0 \]

- In general

\[\lambda_{j-1} \pi_{j-1} - (\lambda_j + \mu_j) \pi_j + \mu_{j+1} \pi_{j+1} = 0 \quad \Rightarrow \pi_{j+1} = \left(\frac{\lambda_0 \ldots \lambda_j}{\mu_1 \ldots \mu_{j+1}}\right) \pi_0 \]

- Making the sum equal to 1

\[\pi_0 \left(1 + \sum_{j=1}^{\infty} \left(\frac{\lambda_0 \ldots \lambda_{j-1}}{\mu_1 \ldots \mu_j}\right)\right) = 1 \]

Solution exists if

\[S = 1 + \sum_{j=1}^{\infty} \left(\frac{\lambda_0 \ldots \lambda_{j-1}}{\mu_1 \ldots \mu_j}\right) < \infty \]
Uniformization of Markov Chains

- In general, discrete-time models are easier to work with, and computers (that are needed to solve such models) operate in discrete-time.
- Thus, we need a way to turn continuous-time to discrete-time Markov Chains.

Uniformization Procedure

- Recall that the total rate out of state i is $-q_{ii} = \Lambda(i)$. Pick a uniform rate γ such that $\gamma \geq \Lambda(i)$ for all states i.
- The difference $\gamma - \Lambda(i)$ implies a “fictitious” event that returns the MC back to state i (self loop).
Uniformization of Markov Chains

Uniformization Procedure

Let P^U_{ij} be the transition probability from state i to state j for the discrete-time uniformized Markov Chain, then

$$P^U_{ij} = \begin{cases} \frac{q_{ij}}{\gamma} & \text{if } i \neq j \\ \frac{\gamma - \sum_{j \neq i} q_{ij}}{\gamma} & \text{if } i = j \end{cases}$$